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Arbitrary-width confined states of traveling-wave convection: Pinning, locking, drift, and stability
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I describe observations of ‘‘arbitrary-width” confined states of traveling-wave convection in an
ethanol-water mixture with separation ratio = —0.253, made in an extremely uniform annular cell.
The time derivative of the spatial width of these confined states vanishes at a unique, width-dependent
Rayleigh number, not over a finite band of Rayleigh numbers as previously reported. Also, the confined

states drift slowly around the cell, backwards.

PACS number(s): 47.27.Te, 47.20.Ky

Rayleigh-Bénard convection in a thin, horizontal layer
of a binary-fluid mixture which is heated from below
takes the form of traveling waves (TW’s), which are trig-
gered by a subcritical bifurcation from the quiescent state
when the Rayleigh number r is increased above a thresh-
old r,, [1,2]. Once nonlinear TW’s fill the experimental
cell, they will persist below onset, giving way to the quies-
cent state again only when 7 is reduced below a saddle-
node Rayleigh number r; <r.,. In the hysteresis loop be-
tween 7, and r.,, both TW’s and the quiescent state are
stable solutions of the equations of motion for this sys-
tem. In the context of the complex Ginzburg-Landau
equation (CGLE), a frequently used model of this system,
it is possible for these two states to stably coexist,
separated in space by fronts, if the system is sufficiently
large [3]. This model also has “pulse” solutions; i.e., nar-
row convective structures surrounded by inactive fluid
[3]. In this paper, I refer generally to such localized con-
vecting regions surrounded by quiescent fluid as
“confined states.”

The first confined state of TW’s observed in this system
was created in a narrow, rectangular cell [4], and was
subsequently shown to closely resemble a pulse solution
of a subcritical CGLE [3,5]. Experimentally, TW pulses
have been studied at separation ratios ¢ in the range
—0.13 ¢ < —0.03. Their spatial structure—in particu-
lar, their width—is remarkably insensitive to experimen-
tal parameters, and they drift slowly through a
sufficiently uniform cell [5-7]. The drift velocity vy, is
extremely sensitive to the local Rayleigh number. For
most experimental parameters, pulses drift forwards; i.e.,
in the same direction as the phase velocity of the underly-
ing TW’s [6]. Many important features of fixed-width
TW pulses have been reproduced in numerical integra-
tions of the full Navier-Stokes equations in two dimen-
sions [8]. While the slow drift cannot be properly
modeled using a single-field CGLE, Riecke has recently
shown how to self-consistently derive a CGLE coupled to
a slow mean concentration field; this coupling causes
pulses to drift at slow velocities that are qualitatively con-
sistent with experimental observations [9].

For more negative separation ratios, confined-state
behavior in this system is quite different. In experiments
at Y= —0.25 reported in Ref. [10], confined states of any
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width could be created. Once such an ‘“arbitrary-width”
confined state was made, its spatial extent could be made
time independent by changing the Rayleigh number r to a
value inside a narrow band (width 2.3% in [10]) deep in-
side the hysteresis loop. The confined state could be
made to grow (shrink) only by adjusting » above (below)
this Rayleigh-number band. Remarkably, inside this
“locking band,” the width of the confined state remained
fixed, and there was no spatial drift, even if » was moved
around inside the band.

Many of the experimental features of arbitrary-width
confined states were also observed in the numerical simu-
lations of the authors of Ref. [8]. For ¥=—0.25, they
observed a wide confined state whose frequency and spa-
tial structure matched experimental observations in detail
[11]. Wide confined states were also observed in the
coupled-field model of Ref. [9], for the case of a CGLE
with purely real coefficients. Wide confined states drift
forwards in Ref. [8] and backwards in Ref. [9], in con-
tradiction to each other and to the experimental observa-
tions. A much more serious puzzle, however, is present-
ed by the observation of a continuum of confined-state
widths for each Rayleigh number in the locking band, be-
cause confined-state solutions of the single-field CGLE
are known to form a countable, discrete set [3]. Locking
cannot arise in this model, even if ‘“nonadiabatic” effects
are included [12].

These discrepancies, along with an advancing under-
standing of the experimental role of inhomogeneities
[6,13], have raised the suspicion that the locking band
and the lack of drift seen in Refs. [10,11] were experimen-
tal artifacts, caused by pinning of the confined-state
boundaries by imperfections in the experimental cell. To
resolve these issues, I have conducted new experiments
on arbitrary-width confined states in the cell with greatly
improved spatial uniformity [6,13]. I find that these
confined states drift backwards. More importantly, while
there is a hint of “locking” in the raw data, this quickly
disappears when the data are corrected by subtracting off
a smooth function of confined-state width. To within
quite high precision, there is no “locking band.”

The apparatus and techniques used in these experi-
ments have been extensively described in recent publica-
tions [6,13]. The cell is an annular channel of height
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confined state is shown in Fig. 1. This state exhibited a

full width at half maximum spatial width of 21.1, and its
amplitude and wave-number profiles match the measure-
ments presented in Ref. [11]. The TW’s in this state
propagate to the left with phase velocity v, =1.480,
while the amplitude profile drifts in the opposite direction
at a much lower velocity: vy = —0.0237. I have allowed
confined states like this one to drift around the cell con-
tinually for weeks, taking approximately 60 h (40007,) for
a round trip.

Quantitative measurements of the drift and the spatial
growth of arbitrary-width confined states are presented in
Fig. 2. To produce each data point in these graphs, a
confined state was allowed to evolve for several hours at
constant Rayleigh number, and then a series of flow-
visualization images was recorded over the next several
hours. The leading- and trailing-edge fronts of the
confined state were identified at each time step as the
50% points in the demodulated TW amplitude profile.

d =0.2737 cm, radial width 1.677d, and mean circumfer-
ence 82.47d, formed by a concentric plastic disk and ring
which are clamped between an electrically heated,
mirror-polished silicon bottom plate and a transparent,
water-cooled sapphire top plate. The fractional spatial
uniformity and temporal stability of the applied vertical
temperature difference are 4 X 10~% and 5X 1073, respec-
tively. The flow pattern is viewed from above by a sha-
dowgraphic flow-visualization system and is recorded by
an annular array of 720 photodiodes. In the present ex-
periments, this pattern consists of radial wave fronts
which propagate around the cell in a single azimuthal
direction under a spatially localized amplitude profile.
This profile and the corresponding wave-number profile
are extracted from the raw signal by demodulation in
space at the measured mean wave number, using the
techniques described in Ref. [13]. The precision of these
calculations is at the 1% level. The fluid is an 8 wt %

solution of ethanol in water at a mean temperature of
27.8°C, for which the separation ratio = —0.253, Differentiating in time to produce the front velocities v,

Prandtl number P =8.93, and the Lewis number and v,, respectively, I define the drift velocity
L =0.0079 [14]. In this paper, lengths are scaled by the  y, =(v,+v,)/2 and the expansion velocity Av=v, —v,.
cell height d, and velocities are scaled by d /7,, where As shown in Fig. 2(a), the drift velocity depends very lit-
7,=355.6 sec is the vertical thermal diffusion time. The  tle on the Rayleigh number or on the confined-state

sign of velocities is defined by the direction of TW propa- width. The weighted average of the data points in Fig.
2(a) is U4, = —0.0205(34). The expansion velocity, plot-

ted in Fig. 2(b), increases with Rayleigh number, with a
slope of about 3. The data exhibit substantial scatter; a
fit to a cubic polynomial in r exhibits an rms residual of
0.0033. It might be thought at first that the slight flatten-
ing of the trend of the data seen in the range
1.335 5 r £1.340 represents a locking band obscured by
the scatter. However, both of these features are caused in
fact not by locking but by the dependence of the expan-

gation.
TW convection is triggered in this

7o =1.45974(18) and persists down to r,=1.2421(8)
[15]. Inside this hysteresis loop, confined states can be
created using techniques described in Refs. [6,10]. I have
studied confined states at Rayleigh numbers in the range
1.328 Sr51.349. Most of the confined states studied
had spatial widths in the range 8 <w <12, with a few
data points taken at much larger widths. All of the

system at
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FIG. 1. Space-time paths of the convective roll boundaries
are shown for a confined state of spatial width 21.1. The re-
duced Rayleigh number for this run was r=1.3402. Rolls
propagate to the left at a velocity v,, = 1.480, while the confined
state as a whole drifts to the right at a velocity vy, = —0.0237.

FIG. 2. Mean drift velocity vy, =(v;+v,)/2 (a) and the ex-
pansion velocity Av=v;—v, (b) are plotted as functions of the
reduced Rayleigh number . In this and subsequent figures, er-

ror bars are shown when larger than the symbol.
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FIG. 3. Width-corrected expansion velocity AD=Av sion velocity vanishes. The data for w <17 are well represented

—pB(w—w) is plotted as a function of the reduced Rayleigh
number r. To within the experimental precision, A7 is a smooth
function of r with a unique intercept », =1.33648(23).

sion of the confined state on its width w. I extracted this
dependence by fitting the data points Av(r,w) to the sum
of a cubic in 7 and a linear function B(w —iv), where
w =10 is the average experimental width. Using the fit
parameter 3, the width dependence of Av(r,w) can be re-
moved by computing AvD(r)=Av(r,w)—B(w—w) for
each data point. This width-corrected expansion velocity
is plotted vs Rayleigh number in Fig. 3. The error bars in
this graph are somewhat larger than those in Fig. 2(b) be-
cause the confined-state width w is not constant in time
during most of the measurements; this introduces uncer-
tainty in the width correction S(w — ). Nonetheless, the
width correction has reduced the scatter in the data to
0.0015 rms and has revealed a smooth dependence of AU
on r. The fitted function of r passes through the horizon-
tal axis with slope 7, !=3.27(20) at an intercept
r,=1.33648(23), which I interpret as the unique value at
which a confined state of width @ neither grows nor
shrinks. To within this very high precision, there is no
locking band.

To the extent that the width-corrected expansion ve-
locity is linear in the Rayleigh number, confined-state
evolution can be represented by a simple differential
equation:

To%,l—f—=r—ro(w) , (1)
where r,(w)=r,—7,B(w—) is the Rayleigh number at
which a confined state of width w neither grows nor
shrinks. Using the fit parameter 7, !, each measurement
Av(r,w) yields a value of r,(w) which depends only weak-
ly on the functional form assumed for the width depen-
dence: r,(w)=r—71,Av(r,w). Figure 4 shows the depen-
dence of this Rayleigh number on width. There appears
to be a break in the slope of r,(w) near w =17; since
there are not enough data points at large w to determine
the shape of this function there, I excluded the data point
at w =25.5 from the fit in the previous paragraph and
from Fig. 3. Without this point, 7,(w) is indeed an ap-
proximately linear function of width, with slope
dr,/dw=4.8(3)X10"* for 7Sw $17. Qualitative obser-

by a straight line of slope dr,/dw=4.8(3)X10™*.
pears to increase very weakly with w for w X 20.

r,(w) ap-

vations of very wide confined states suggest that dr, /dw
is very weakly positive for 25 S w <40 [16].

The sign and magnitude of the derivative dr,/dw are
important because they determine the stability of the
confined state: steady-state solutions to Eq. (1) are stable
if dr, /dw > 0. In this regime, a confined state of width w
simply relaxes to the time-independent width w, given by
r,(w,)=r. In the present experiments, I did not wait for
this to happen. If I had done so, then the data graphed in
Fig. 2(b) would have exhibited a plateau at Av =0, which
could have been misinterpreted as a locking band. The
slight flattening of the trend of the data in the center of
Fig. 2(b) is probably the effect of a partial approach to
this equilibrium. Solutions of Eq. (1) for which
dr,/dw <0 are unstable. An unstable confined state will
grow or shrink until it either fills the system, disappears
completely, or attains a width for which dr, /dw >0. At
1= —0.127, it is possible to force fixed-width TW pulses
to grow into arbitrary-width confined states which are
globally and strongly unstable; i.e., for which 7r,(w) is a
monotonically decreasing function and the expansion rate
|7, 'dr, /dw| is large. These unstable confined states can
be maintained in a steady state only by actively control-
ling their width with a servo. Observations of this type
will be reported in the future.

The results of these experiments are that confined
states at 1= —0.253 drift backwards, do not exhibit lock-
ing, and are stable. The previous observations of station-
ary confined states and a rather wide locking band can
undoubtedly be ascribed to pinning by inhomogeneities in
the experimental cell. As in the case of fixed-width TW
pulses observed at smaller |4, this pinning apparently
has little effect on the structure of the confined state. The
observation that time-independent, ‘‘arbitrary-width”
confined states actually have a unique width at a given
Rayleigh number removes a long-standing discrepancy
between the experimental observation of a locking band
and the prediction of a discrete family of confined-state
solutions for the CGLE model.

I am pleased to acknowledge continuing conversations
with P. C. Hohenberg.
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